Lp intersection bodies

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

INTERSECTION BODIES AND Lp-SPACES

In this talk we discuss a new connection between convex geometry and the theory of Lp-spaces. It appears that intersection bodies, one the main objects of convex geometry, are directly related to the concept of embedding of normed spaces in Lp with p < 0. This allows to get new geometric results by extending different facts about Lp-spaces to negative values of p. We present several application...

متن کامل

A Characterization of Lp Intersection Bodies

All GL(n) covariant Lp radial valuations on convex polytopes are classified for every p > 0. It is shown that for 0 < p < 1 there is a unique non-trivial such valuation with centrally symmetric images. This establishes a characterization of Lp intersection bodies. 2000 AMS subject classification: 52A20 (52B11, 52B45)

متن کامل

Lp-dual geominimal surface areas for the general Lp-intersection bodies

For 0 < p < 1, Haberl and Ludwig defined the notions of symmetric and asymmetric Lp-intersection bodies. Recently, Wang and Li introduced the general Lp-intersection bodies. In this paper, we give the Lp-dual geominimal surface area forms for the extremum values and Brunn-Minkowski type inequality of general Lp-intersection bodies. Further, combining with the Lp-dual geominimal surface areas, w...

متن کامل

Intersection Bodies and Valuations

All GL (n) covariant star-body-valued valuations on convex polytopes are completely classified. It is shown that there is a unique nontrivial such valuation. This valuation turns out to be the so-called “intersection operator”—an operator that played a critical role in the solution of the Busemann-Petty problem. Introduction. A function Z defined on the set K of convex bodies (that is, of conve...

متن کامل

Complex intersection bodies

We introduce complex intersection bodies and show that their properties and applications are similar to those of their real counterparts. In particular, we generalize Busemann’s theorem to the complex case by proving that complex intersection bodies of symmetric complex convex bodies are also convex. Other results include stability in the complex Busemann-Petty problem for arbitrary measures an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Mathematics

سال: 2008

ISSN: 0001-8708

DOI: 10.1016/j.aim.2007.11.013